

Course Title: Nuclear Physics-I			
Course Code: PHYS26481			
Program: Physics			
Department: Physics			
College: Science			
Institution: University of Bisha			
Version: 3			
Last Revision Date: 25 July 2023			

2023

TP-153

Table of Contents

A. General information about the course:	3
1. Course Identification	3
2. Teaching mode (mark all that apply)	3
3. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7

A. General information about the course:

1. Course Identification

1. Credit hours:3

2. Course type

	University	College 🗆	Department⊠	Track	Others 🗆
В.	Required 🖂	Elective			
3.	Level/year at wh	7 th Level / 4 th	year		

4. Course general Description

This course explores some properties of nuclei, nuclear model, radioactivity, nuclear magnetic resonance, magnetic resonance imaging and the basic experiments in nuclear physic.

5. Pre-requirements for this course:

NA

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Recognize properties of nuclei, nuclear models, the radioactivity, the nuclear magnetic resonance.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

3. Contact Hours (based on the academic semester)							
No	Activity	Contact Hours					
1.	Lectures	45					
2.	Laboratory/Studio						
3.	Field						
4.	Tutorial						
5.	Others (specify)						
	Total	45					

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	Describe some properties of nuclei.	K.2		Written test	
1.2	List the different nuclear model.	К.2	Lectures	Reports	
1.3	Define the radioactivity.	K.2	Solve problems	Homework	
1.4	Recognize the nuclear magnetic resonance.	К.2		Quizzes	
2.0	Skills				
2.1	Solve problems related to nuclei properties.	S.1			
2.2	Apply the nuclear model.	S.1	Lectures	Written test Reports	
2.3	Solve problems in the decay process.	S.1	Solve problems.	Homework Quizzes	
2.4	Analyze the magnetic resonance Imaging.	S.1		Quizzes	
3.0	Values, autonomy, and responsib	ility			
3.1	Apply academic and professional ethical values effectively and efficiently.	V.1	Lectures Self-learning	Questionnaire	

C. Course Content

No	List of Topics	Contact Hours
1.	Some Properties of Nuclei Unit of energy and mass Charge and Mass The Volume and Density of a Nucleus	4.5

The Size and Structure of Nuclei. Nuclear Stability.	
 Some Properties of Nuclei The Size and Structure of Nuclei. Nuclear Stability. 	4.5
 3. Nuclear Model Applying the Semi Empirical Binding-Energy 	gy Formula
4. Nuclear Model The Liquid-Drop Model.	4.5
5. The Shell Model.Nuclear spin	4.5
 6. Radioactivity The Decay Processes Alpha Decay Beta Decay 	4.5
7. Radioactivity Carbon Dating Radioactive Dating Gamma Decay	4.5
8. Radioactivity Natural Radioactivity Artificial radioactivity Nuclear Reaction	4.5
 Nuclear Magnetic Resonance and Magnet 9. Nuclear magneton Nuclear magnetic resonance 	etic Resonance Imaging 4.5
 Nuclear Magnetic Resonance and Magnetic The potential energy interaction Magnetic resonance imaging 	etic Resonance Imaging 4.5
Total	45

Table: The matrix of consistency between the content and the learning outcomes of the course.

				Course Learning Outcomes					
	1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	3.1
Topic 1	✓				✓				✓
Topic 2	✓				✓				✓
Topic 3		✓				✓			√
Topic 4		✓				✓			√
Topic 5		✓				✓			√
Topic 6			✓				✓		√
Topic 7			✓				✓		✓
Topic 8			✓				✓		√

Topic 9		✓		✓	✓
Topic 10		✓		✓	✓

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Physics for Scientists and Engineers, 10th Edition, by Raymond A. Serway, John W. Jewett, BROOKS/COLE CENGAGE Learning, Boston USA, (2019). Nuclear Physics - Graduate Texts in Physics, 1st Edition, Anwar KAMAL, Springer Heidelberg New York Dordrecht London, (2014).
Supportive References	 Problems and Solutions in Nuclear and Particle Physics, Edited by Sergio Petrera, Springer Nature Switzerland AG., (2019). Nuclear and Particle Physics an introduction, by B. R. Martin, Wiley & Sons, Ltd, Southem Gate, Chichester West Sussex POI9 8SQ, England, (2006). Worked examples in modern physics, Volume 1, P. Rohers and A. Stephens, London ILIFFE BOOKS LTD, Dorsef House, England, (2013).
Electronic Materials	 Blackboard. PowerPoint presentations. Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms, Physics lab.
Technology equipment	Data show or smart board.

Items	Resources
Other equipment	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council	
REFERENCE NO.	20	
DATE	17 August 2023	

